RFM Segmentation
Customer Segmentation Using RFM Analysis.
This module implements RFM (Recency, Frequency, Monetary) segmentation, a widely used technique in customer analytics to categorize customers based on their purchasing behavior.
RFM segmentation assigns scores to customers based on: 1. Recency (R): How recently a customer made a purchase. 2. Frequency (F): How often a customer makes purchases. 3. Monetary (M): The total amount spent by a customer.
Benefits of RFM Segmentation:
- Customer Value Analysis: Identifies high-value customers who contribute the most revenue.
- Personalized Marketing: Enables targeted campaigns based on customer purchasing behavior.
- Customer Retention Strategies: Helps recognize at-risk customers and develop engagement strategies.
- Sales Forecasting: Provides insights into future revenue trends based on past spending behavior.
Scoring Methodology:
- Each metric (R, F, M) is divided into 10 bins (0-9) using the NTILE(10) function.
- A higher score indicates a better customer (e.g., lower recency, higher frequency, and monetary value).
- The final RFM segment is computed as
R*100 + F*10 + M
, providing a unique customer classification.
This module leverages pandas
and ibis
for efficient data processing and integrates with retail analytics workflows
to enhance customer insights and business decision-making.
RFMSegmentation
Segments customers using the RFM (Recency, Frequency, Monetary) methodology.
Customers are scored on three dimensions: - Recency (R): Days since the last transaction (lower is better). - Frequency (F): Number of unique transactions (higher is better). - Monetary (M): Total amount spent (higher is better).
Each metric is ranked into bins using either NTILE or custom cut points where, - The highest score represents the best score (top percentile of customers). - The lowest score represents the lowest score (bottom percentile of customers). The RFM segment is a 3-digit number (R100 + F10 + M), representing customer value.
Source code in pyretailscience/segmentation/rfm.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
df: pd.DataFrame
property
Returns the dataframe with the segment names.
__init__(df, current_date=None, r_segments=10, f_segments=10, m_segments=10, min_monetary=None, max_monetary=None, min_frequency=None, max_frequency=None)
Initializes the RFM segmentation process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame | Table
|
A DataFrame or Ibis table containing transaction data. Must include the following columns: - customer_id - transaction_date - unit_spend - transaction_id |
required |
current_date |
Optional[Union[str, date]]
|
The reference date for calculating recency. Can be a string (format: "YYYY-MM-DD"), a date object, or None (defaults to the current system date). |
None
|
r_segments |
Union[int, list[float]]
|
Number of bins (1-10) or custom percentile cut points (max 9 cut points). Defaults to 10 bins. |
10
|
f_segments |
Union[int, list[float]]
|
Number of bins (1-10) or custom percentile cut points (max 9 cut points). Defaults to 10 bins. |
10
|
m_segments |
Union[int, list[float]]
|
Number of bins (1-10) or custom percentile cut points (max 9 cut points). Defaults to 10 bins. |
10
|
min_monetary |
Optional[float]
|
Minimum monetary value to include in segmentation. Customers with total spend below this value will be excluded from the analysis. |
None
|
max_monetary |
Optional[float]
|
Maximum monetary value to include in segmentation. Customers with total spend above this value will be excluded from the analysis. |
None
|
min_frequency |
Optional[int]
|
Minimum purchase frequency to include in segmentation. Customers with fewer transactions will be excluded from the analysis. |
None
|
max_frequency |
Optional[int]
|
Maximum purchase frequency to include in segmentation. Customers with more transactions will be excluded from the analysis. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If the dataframe is missing required columns, invalid segment parameters, or invalid filter parameters. |
TypeError
|
If the input data is not a pandas DataFrame or an Ibis Table. |