SegTransactionStats Segmentation
Module for calculating and visualizing transaction statistics by segment.
This module provides the SegTransactionStats
class, which allows for the computation of
transaction-based statistics grouped by one or more segment columns. The statistics include
aggregations such as total spend, unique customers, transactions per customer, and optional
custom aggregations.
The module supports both Pandas DataFrames and Ibis Tables as input data formats. It also offers visualization capabilities to generate plots of segment-based statistics.
SegTransactionStats
Calculates transaction statistics by segment.
Source code in pyretailscience/segmentation/segstats.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
df: pd.DataFrame
property
Returns the dataframe with the transaction statistics by segment.
__init__(data, segment_col='segment_name', calc_total=True, extra_aggs=None)
Calculates transaction statistics by segment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame | Table
|
The transaction data. The dataframe must contain the columns customer_id, unit_spend and transaction_id. If the dataframe contains the column unit_quantity, then the columns unit_spend and unit_quantity are used to calculate the price_per_unit and units_per_transaction. |
required |
segment_col |
str | list[str]
|
The column or list of columns to use for the segmentation. Defaults to "segment_name". |
'segment_name'
|
calc_total |
bool
|
Whether to include the total row. Defaults to True. |
True
|
extra_aggs |
dict[str, tuple[str, str]]
|
Additional aggregations to perform. The keys in the dictionary will be the column names for the aggregation results. The values are tuples with (column_name, aggregation_function), where: - column_name is the name of the column to aggregate - aggregation_function is a string name of an Ibis aggregation function (e.g., "nunique", "sum") Example: {"stores": ("store_id", "nunique")} would count unique store_ids. |
None
|
Source code in pyretailscience/segmentation/segstats.py
plot(value_col, title=None, x_label=None, y_label=None, ax=None, orientation='vertical', sort_order=None, source_text=None, hide_total=True, **kwargs)
Plots the value_col by segment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value_col |
str
|
The column to plot. |
required |
title |
str
|
The title of the plot. Defaults to None. |
None
|
x_label |
str
|
The x-axis label. Defaults to None. When None the x-axis label is blank when the
orientation is horizontal. When the orientation is vertical it is set to the |
None
|
y_label |
str
|
The y-axis label. Defaults to None. When None the y-axis label is set to the
|
None
|
ax |
Axes
|
The matplotlib axes object to plot on. Defaults to None. |
None
|
orientation |
Literal['vertical', 'horizontal']
|
The orientation of the plot. Defaults to "vertical". |
'vertical'
|
sort_order |
Literal['ascending', 'descending', None]
|
The sort order of the segments. Defaults to None. If None, the segments are plotted in the order they appear in the dataframe. |
None
|
source_text |
str
|
The source text to add to the plot. Defaults to None. |
None
|
hide_total |
bool
|
Whether to hide the total row. Defaults to True. |
True
|
**kwargs |
dict[str, any]
|
Additional keyword arguments to pass to the Pandas plot function. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
SubplotBase |
SubplotBase
|
The matplotlib axes object. |
Raises:
Type | Description |
---|---|
ValueError
|
If the sort_order is not "ascending", "descending" or None. |
ValueError
|
If the orientation is not "vertical" or "horizontal". |
ValueError
|
If multiple segment columns are used, as plotting is only supported for a single segment column. |
Source code in pyretailscience/segmentation/segstats.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|