Customer Decision Hierarchy
This module contains the RangePlanning class for performing customer decision hierarchy analysis.
CustomerDecisionHierarchy
A class to perform customer decision hierarchy analysis using the Customer Decision Hierarchy method.
Source code in pyretailscience/analysis/customer_decision_hierarchy.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
|
__init__(df, product_col, exclude_same_transaction_products=True, method='truncated_svd', min_var_explained=0.8, random_state=42)
Initializes the RangePlanning object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame
|
The input dataframe containing transaction data. The dataframe must have the columns customer_id, transaction_id, product_name. |
required |
product_col |
str
|
The name of the column containing the product or category names. |
required |
exclude_same_transaction_products |
bool
|
Flag indicating whether to exclude products found in the same transaction from a customer's distinct list of products bought. The idea is that if a customer bought two products in the same transaction they can't be substitutes for that customer. Thus they should be excluded from the analysis. Defaults to True. |
True
|
method |
Literal['truncated_svd', 'yules_q']
|
The method to use for calculating distances. Defaults to "truncated_svd". |
'truncated_svd'
|
min_var_explained |
float
|
The minimum variance explained required for truncated SVD method. Only applicable if method is "truncated_svd". Defaults to 0.8. |
0.8
|
random_state |
int
|
Random seed for reproducibility. Defaults to 42. |
42
|
Raises:
Type | Description |
---|---|
ValueError
|
If the dataframe does not have the require columns. |
Source code in pyretailscience/analysis/customer_decision_hierarchy.py
plot(title='Customer Decision Hierarchy', x_label=None, y_label=None, ax=None, figsize=None, source_text=None, **kwargs)
Plots the customer decision hierarchy dendrogram.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
title |
str
|
The title of the plot. Defaults to None. |
'Customer Decision Hierarchy'
|
x_label |
str
|
The label for the x-axis. Defaults to None. |
None
|
y_label |
str
|
The label for the y-axis. Defaults to None. |
None
|
ax |
Axes
|
The matplotlib Axes object to plot on. Defaults to None. |
None
|
figsize |
tuple[int, int]
|
The figure size. Defaults to None. |
None
|
source_text |
str
|
The source text to annotate on the plot. Defaults to None. |
None
|
**kwargs |
dict[str, any]
|
Additional keyword arguments to pass to the dendrogram function. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
SubplotBase |
SubplotBase
|
The matplotlib SubplotBase object. |