Customer Analysis
Customer Purchase Behavior Analysis for Retention and Value Optimization.
Business Context
Understanding customer purchase patterns is fundamental to retail success. Some customers make single purchases and never return, while others become loyal repeat buyers. This module analyzes the distribution of purchase frequency to identify customer behavior segments and inform retention strategies.
The Business Problem
Retailers need to understand the relationship between customer purchase frequency and business performance: - What percentage of customers are one-time buyers versus repeat customers? - How does purchase frequency relate to customer lifetime value? - Which customer segments offer the greatest growth opportunities?
Without this analysis, businesses may invest equally in all customers or fail to identify high-potential segments for targeted retention efforts.
Real-World Applications
Customer Retention Strategy
- Identify the percentage of one-time buyers for targeted reactivation campaigns
- Segment customers by purchase frequency for differentiated marketing approaches
- Develop loyalty programs based on actual behavior patterns
Resource Allocation
- Focus retention efforts on customers showing repeat purchase potential
- Allocate customer service resources based on customer value segments
- Optimize marketing spend by targeting high-frequency customer characteristics
Business Performance Monitoring
- Track changes in purchase frequency distribution over time
- Monitor the health of customer acquisition versus retention balance
- Identify shifts in customer behavior that may indicate market changes
This module visualizes purchase frequency distribution to reveal customer behavior patterns and guide strategic retention decisions.
DaysBetweenPurchases
A class to plot the distribution of the average number of days between purchases per customer.
Attributes:
| Name | Type | Description |
|---|---|---|
purchase_dist_s |
Series
|
The average number of days between purchases per customer. |
Source code in pyretailscience/analysis/customer.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | |
__init__(df)
Initialize the DaysBetweenPurchases class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df |
DataFrame
|
A dataframe with the transaction data. The dataframe must have the columns customer_id and transaction_date, which must be non-null. |
required |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the dataframe does doesn't contain the columns customer_id and transaction_id, or if the columns are null. |
Source code in pyretailscience/analysis/customer.py
plot(bins=10, cumulative=False, ax=None, percentile_line=None, title=None, x_label=None, y_label=None, source_text=None, **kwargs)
Plot the distribution of the average number of days between purchases per customer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
bins |
int
|
The number of bins to plot. Defaults to 10. |
10
|
cumulative |
bool
|
Whether to plot the cumulative distribution. Defaults to False. |
False
|
ax |
Axes
|
The Matplotlib axes to plot the graph on. Defaults to None. |
None
|
percentile_line |
float
|
The percentile to draw a line at. Defaults to None. When None then no line is drawn. |
None
|
title |
str
|
The title of the plot. Defaults to None. |
None
|
x_label |
str
|
The x-axis label. Defaults to None. |
None
|
y_label |
str
|
The y-axis label. Defaults to None. |
None
|
source_text |
str
|
The source text to add to the plot. Defaults to None. |
None
|
kwargs |
dict[str, any]
|
Additional keyword arguments to pass to the plot |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
SubplotBase |
SubplotBase
|
The Matplotlib axes of the plot |
Source code in pyretailscience/analysis/customer.py
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | |
purchases_percentile(percentile=0.5)
Get the average number of days between purchases at a given percentile.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
percentile |
float
|
The percentile to get the average number of days between purchases at. |
0.5
|
Returns:
| Name | Type | Description |
|---|---|---|
float |
float
|
The average number of days between purchases at the given percentile. |
Source code in pyretailscience/analysis/customer.py
PurchasesPerCustomer
A class to plot the distribution of the number of purchases per customer.
Attributes:
| Name | Type | Description |
|---|---|---|
cust_purchases_s |
Series
|
The number of purchases per customer. |
Source code in pyretailscience/analysis/customer.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | |
__init__(df)
Initialize the PurchasesPerCustomer class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df |
DataFrame
|
A dataframe with the transaction data. The dataframe must comply with the contain customer_id and transaction_id columns, which must be non-null. |
required |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the dataframe doesn't contain the columns customer_id and transaction_id, or if the columns are null. |
Source code in pyretailscience/analysis/customer.py
find_purchase_percentile(number_of_purchases, comparison='less_than_equal_to')
Find the percentile of the number of purchases.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
number_of_purchases |
int
|
The number of purchases to find the percentile of. |
required |
comparison |
str
|
The comparison to use. Defaults to "less_than_equal_to". Must be one of less_than, less_than_equal_to, equal_to, not_equal_to, greater_than, or greater_than_equal_to. |
'less_than_equal_to'
|
Returns:
| Name | Type | Description |
|---|---|---|
float |
float
|
The percentile of the number of purchases. |
Source code in pyretailscience/analysis/customer.py
plot(bins=10, cumulative=False, ax=None, percentile_line=None, source_text=None, title=None, x_label=None, y_label=None, **kwargs)
Plot the distribution of the number of purchases per customer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
bins |
int
|
The number of bins to plot. Defaults to 10. |
10
|
cumulative |
bool
|
Whether to plot the cumulative distribution. Defaults to False. |
False
|
ax |
Axes
|
The Matplotlib axes to plot the graph on. Defaults to None. |
None
|
percentile_line |
float
|
The percentile to draw a line at. Defaults to None. When None then no line is drawn. |
None
|
source_text |
str
|
The source text to add to the plot. Defaults to None. |
None
|
title |
str
|
The title of the plot. Defaults to None. |
None
|
x_label |
str
|
The x-axis label. Defaults to None. |
None
|
y_label |
str
|
The y-axis label. Defaults to None. |
None
|
kwargs |
dict[str, any]
|
Additional keyword arguments to pass to the plot function. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
SubplotBase |
SubplotBase
|
The Matplotlib axes of the plot |
Source code in pyretailscience/analysis/customer.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | |
purchases_percentile(percentile=0.5)
Get the number of purchases at a given percentile.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
percentile |
float
|
The percentile to get the number of purchases at. |
0.5
|
Returns:
| Name | Type | Description |
|---|---|---|
float |
float
|
The number of purchases at the given percentile. |
Source code in pyretailscience/analysis/customer.py
TransactionChurn
A class to plot the churn rate by number of purchases.
Attributes:
| Name | Type | Description |
|---|---|---|
purchase_dist_df |
DataFrame
|
The churn rate by number of purchases. |
n_unique_customers |
int
|
The number of unique customers in the dataframe. |
Source code in pyretailscience/analysis/customer.py
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 | |
__init__(df, churn_period)
Initialize the TransactionChurn class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df |
DataFrame
|
A dataframe with the transaction data. The dataframe must have the columns customer_id and transaction_date. |
required |
churn_period |
float
|
The number of days to consider a customer churned. |
required |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the dataframe does doesn't contain the columns customer_id and transaction_id. |
Source code in pyretailscience/analysis/customer.py
plot(cumulative=False, ax=None, title=None, x_label=None, y_label=None, source_text=None, **kwargs)
Plot the churn rate by number of purchases.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
cumulative |
bool
|
Whether to plot the cumulative distribution. Defaults to False. |
False
|
ax |
Axes
|
The Matplotlib axes to plot the graph on. Defaults to None. |
None
|
title |
str
|
The title of the plot. Defaults to None. |
None
|
x_label |
str
|
The x-axis label. Defaults to None. |
None
|
y_label |
str
|
The y-axis label. Defaults to None. |
None
|
source_text |
str
|
The source text to add to the plot. Defaults to None. |
None
|
kwargs |
dict[str, any]
|
Additional keyword arguments to pass to the plot function. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
SubplotBase |
SubplotBase
|
The Matplotlib axes of the plot |