SegTransactionStats Segmentation
Segment Performance Analysis for Retail Business Intelligence.
Business Context
Retailers need to understand performance differences across various business dimensions - whether comparing customer segments, store locations, product categories, brands, channels, or any other grouping. This module transforms transactional data into actionable insights by calculating key performance metrics for any segment or combination of segments.
The Business Problem
Business stakeholders receive segment data but struggle to answer performance questions: - Which stores/categories/customer segments generate the most revenue? - How do transaction patterns differ between segments? - What's the customer density and spending behavior by segment? - Are certain combinations of segments more valuable than others?
Without segment performance analysis, decisions are made on incomplete information rather than data-driven insights about segment value and behavior.
Real-World Applications
Customer Segment Analysis
- Compare RFM segments: Which customer types drive the most revenue?
- Analyze geographic segments: Regional performance differences
- Age/demographic segments: Spending patterns by customer characteristics
Store/Location Analysis
- Store performance comparison: Revenue per customer, transaction frequency
- Regional analysis: Market penetration and customer behavior by area
- Channel analysis: Online vs in-store performance metrics
Product/Category Analysis
- Category performance: Which product lines drive customer frequency?
- Brand analysis: Private label vs national brand customer behavior
- SKU analysis: Performance metrics for product rationalization decisions
Multi-Dimensional Analysis
- Store + Customer segment: High-value customers by location
- Category + Channel: Product performance across sales channels
- Brand + Geography: Regional brand performance variations
This module calculates comprehensive statistics including spend, customer counts, transaction frequency, average basket size, and custom business metrics for any segment combination.
SegTransactionStats
Calculates transaction performance statistics for any business segment or dimension.
Analyzes transaction data across segments like customer types, store locations, product categories, brands, channels, or any combination to reveal performance differences and guide business decisions.
The class automatically calculates key retail metrics including total spend, unique customers, transaction frequency, spend per customer, and custom aggregations for comparison across segments.
Source code in pyretailscience/segmentation/segstats.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 | |
df: pd.DataFrame
property
Returns the dataframe with the transaction statistics by segment.
__init__(data, segment_col='segment_name', calc_total=True, extra_aggs=None, calc_rollup=False, rollup_value='Total', unknown_customer_value=None)
Calculates transaction statistics by segment.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data |
DataFrame | Table
|
The transaction data. The dataframe must contain the columns customer_id, unit_spend and transaction_id. If the dataframe contains the column unit_quantity, then the columns unit_spend and unit_quantity are used to calculate the price_per_unit and units_per_transaction. |
required |
segment_col |
str | list[str]
|
The column or list of columns to use for the segmentation. Defaults to "segment_name". |
'segment_name'
|
calc_total |
bool
|
Whether to include the total row. Defaults to True. |
True
|
extra_aggs |
dict[str, tuple[str, str]]
|
Additional aggregations to perform. The keys in the dictionary will be the column names for the aggregation results. The values are tuples with (column_name, aggregation_function), where: - column_name is the name of the column to aggregate - aggregation_function is a string name of an Ibis aggregation function (e.g., "nunique", "sum") Example: {"stores": ("store_id", "nunique")} would count unique store_ids. |
None
|
calc_rollup |
bool
|
Whether to calculate rollup totals. Defaults to False. When True and multiple segment columns are provided, the method generates subtotal rows for both: - Prefix rollups: progressively aggregating left-to-right (e.g., [A, B, Total], [A, Total, Total]). - Suffix rollups: progressively aggregating right-to-left (e.g., [Total, B, C], [Total, Total, C]). A grand total row is also included when calc_total is True. Performance: adds O(n) extra aggregation passes where n is the number of segment columns. For large hierarchies, consider disabling rollups or reducing columns. |
False
|
rollup_value |
Any | list[Any]
|
The value to use for rollup totals. Can be a single value applied to all columns or a list of values matching the length of segment_col, with each value cast to match the corresponding column type. Defaults to "Total". |
'Total'
|
unknown_customer_value |
int | str | Scalar | BooleanColumn | None
|
Value or expression identifying unknown customers for separate tracking. When provided, metrics are split into identified, unknown, and total variants. Accepts simple values (e.g., -1), ibis literals, or boolean expressions (e.g., data["customer_id"] < 0). Requires customer_id column. Defaults to None. |
None
|
Source code in pyretailscience/segmentation/segstats.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | |
plot(value_col, title=None, x_label=None, y_label=None, ax=None, orientation='vertical', sort_order=None, source_text=None, hide_total=True, **kwargs)
Plots the value_col by segment.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
value_col |
str
|
The column to plot. |
required |
title |
str
|
The title of the plot. Defaults to None. |
None
|
x_label |
str
|
The x-axis label. Defaults to None. When None the x-axis label is blank when the
orientation is horizontal. When the orientation is vertical it is set to the |
None
|
y_label |
str
|
The y-axis label. Defaults to None. When None the y-axis label is set to the
|
None
|
ax |
Axes
|
The matplotlib axes object to plot on. Defaults to None. |
None
|
orientation |
Literal['vertical', 'horizontal']
|
The orientation of the plot. Defaults to "vertical". |
'vertical'
|
sort_order |
Literal['ascending', 'descending', None]
|
The sort order of the segments. Defaults to None. If None, the segments are plotted in the order they appear in the dataframe. |
None
|
source_text |
str
|
The source text to add to the plot. Defaults to None. |
None
|
hide_total |
bool
|
Whether to hide the total row. Defaults to True. |
True
|
**kwargs |
dict[str, any]
|
Additional keyword arguments to pass to the Pandas plot function. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
SubplotBase |
SubplotBase
|
The matplotlib axes object. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the sort_order is not "ascending", "descending" or None. |
ValueError
|
If the orientation is not "vertical" or "horizontal". |
ValueError
|
If multiple segment columns are used, as plotting is only supported for a single segment column. |
Source code in pyretailscience/segmentation/segstats.py
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 | |